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Abstract — Particle fluxes on surfaces are difficult to calculate with Monte Carlo codes because
the score requires a division by the surface-crossing angle cosine, and grazing angles lead to
inaccuracies. We revisit the standard practice of dividing by half of a cosine “cutoff” for
particles whose surface-crossing cosines are below the cutoff. We concentrate on the flux
crossing an external boundary, deriving the standard approach in a manner that explicitly points
out three assumptions: (a) that the external boundary surface flux is isotropic or mostly isotropic;
(b) that the cosine cutoff is small; and (c) that the minimum possible surface-crossing cosine is 0.
We find that the requirement for accuracy of the standard surface flux estimate is more
restrictive for external boundaries (a very isotropic surface flux) than for internal surfaces (an
isotropic or linearly anisotropic surface flux). Numerical demonstrations involve analytic and
semianalytic solutions for monoenergetic point sources irradiating surfaces with no scattering.

We conclude with a discussion of potentially more robust approaches.
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I. INTRODUCTION

The total particle flux on a surface is calculated in Monte Carlo codes by scoring the weight
of each particle crossing the surface divided by the cosine of the angle between the particle
trajectory and the surface normal.'” When a particle grazes the surface, the cosine of the
surface-crossing angle is small, and the particle’s score can be huge, leading to infinite
variances'” and tallies that may have difficulty converging. In some practical situations, for a
reasonable number of starting particles, both the surface flux tally mean and its variance may be
inaccurate.

To circumvent this problem, Clark' recommended “exclud[ing] grazing fluxes from the
stochastic estimate,” replacing them with “an independent estimate of the contribution from
grazing angles.” However, in Ref. 1, Clark did not derive such an estimate. (Alternatively,
Clark suggested, “One can...perhaps extrapolate from the smoothed stochastic estimates of the
nongrazing angles.”)

The standard estimate of the contribution from grazing angles, which can be inferred from

Clark’s theoretical analysis, is as follows. Let u represent the cosine of the surface-crossing

angle. Let 0 < | ,u| < &, where ¢ is small, represent the “grazing band” (in the language of Ref. 1).
Then the prescription is: When | ,u| > &, score 1/ | ,u| as normal, but when | ,u| <¢g,score 2/¢. In
other words, use 2/& as an estimate of the expected value of 1/ | ,u| for grazing angles, defined as
angles for which | ,u| is smaller than e. In the MCNP5 general-purpose Monte Carlo code,” for

example, whenever | ,u| is less than £ = 0.1, 2/¢ = 20 is scored instead. In Ref. 3, ¢=0.01 is

suggested.

The purpose of this paper is to revisit this historic Monte Carlo practice that allows surface-
flux estimates with finite variance. Our interest is specifically in situations in which u is
constrained to a half-space, 0 < u <1; for example, at an external boundary. Clark separately
addressed surfaces within a medium and those which are external boundaries, naturally but
implicitly assuming for the latter a non-zero angular flux only in the half-space. We will show
that the standard estimate requires greater isotropy for fluxes on external boundaries than for

fluxes on internal surfaces.
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More specifically, we are interested in estimating the flux on an exterior surface due to
irradiation from an external source as well as uncollided surface fluxes due to that source. These
surface fluxes are important for sensitivity analyses in certain problems in which scattering can
be ignored.™® As we will show, this is not the type of problem that Clark envisioned when he
wrote his seminal paper, so another goal of this paper is to assess the validity of the standard
approximation for these types of problems.

In Sec. II, we provide a derivation of the estimate that complements the derivation given in
Ref. 3 and highlights some assumptions. Our derivation allows the identification of several
practical situations in which the standard estimate is bound to fail, as well as several practical
situations in which the standard estimate is shown to be accurate. Numerical demonstrations,

none of which include scattering, are given in Sec. III.
II. DERIVATION AND DISCUSSION OF THE STANDARD ESTIMATE
The particle angular flux ¢#(x) on a fixed surface is the angular surface-crossing rate J(u)

divided by the surface-crossing cosine u (Ref. 3). Following Clark,' we expand the surface flux

in powers of x; however, we restrict the range of u to the half-space:

M:igiﬂi, ()gygl
H i=0
0, —1<u<0. (1)

P(u) =

The angular surface-crossing rate and thus the flux are zero for particles crossing in the

“backward” direction. Thus, in this paper, when we speak of the flux as “isotropic,” “linearly

29 ¢¢

isotropic,” “nearly isotropic,” etc., we (generally) mean in the half-space.
The expected (average) value of 1/, I/_y, for particles sampled on the surface from the
function J(u) in the half-space for u < ¢, where ¢ is small, is
[, au”
V="t H (2)

In these equations and in the rest of this paper, we assume monoenergetic particles. In Eq. (2),

the lower limit of the integrals is x,,,, the minimum possible value of the crossing angle cosine,

which may be greater than 0 because of geometric limitations. Thus, the actual range of u may

be constrained to be smaller than the half-space. It is also assumed that & > z,,,. When the

expansion of Eq. (1) is used in Eq. (2), the result is
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Clark’s analysis' retains only two terms in the expansion (go and g, x x) and assumes g,#0
within a medium and g, # 0 at an external boundary.” Dupree and Fraley’s analysis® assumes
the flux is “reasonably isotropic.” Clark and Dupree and Fraley also assume x,, =0 always.

From Eq. (3), when the flux is purely isotropic (g, > 0, g, = 0 for i # 0) in the half-space or

mostly isotropic (g, >> | gi| fori # 0) in the half-space and x,,, =0, the expected value is

1/ﬂ=—, (4)

as derived in Ref. 3, though not (explicitly) in Ref. 1.

As an aside, we examine the situation when the flux is linearly anisotropic
(g,>0,g, #0,g, =0fori>1) in the full range —1 < 1 <1 and the grazing band ranges from —¢
to +e. In this case we use the absolute value of the surface-crossing cosine when relating the

angular surface-crossing rate and the flux: ¢(x) = J(u)/|u|. Equation (2) becomes

| dpi(g, +&H) )

o= :
[* dp(lul+ gmu)

which also leads to Eq. (4) (the g; terms in both the numerator and denominator integrate to
zero). This is the basis for the prescription described in Sec. I for estimating the contribution
from grazing angles in Monte Carlo codes, using a substitute cosine divisor that is half the
“cutoff” value when the flux is at most linearly anisotropic over the full range —1 <  <1.
However, “[f]or situations where gy = 0 and g; # 0, say at an external boundary” (Ref. 1,
p. 238), i.e. when the flux is purely linear (Clark also has g, =0 fori >1) at an external
boundary, circumstances are different. Note that Clark implicitly assumes a linear flux only in
the half-space here; otherwise, incoming fluxes would be negative. Under these assumptions,

and also assuming x,. =0, the expected value [from Eq. (3)] is



Favorite, Thomas, Booth 5

- 3

1//122—8- (6)

Thus, code users should be cautious when applying the standard approximation of Eq. (4) to
external boundaries. It should be noted that the quote above refers to a special case of an
external boundary flux; the more general assumption is “g; # 0 at an external boundary” (Ref. 1,
p. 237), with no restriction on g.

To reiterate, when the surface flux is isotropic or linearly anisotropic
(g, >0,g, #0,g, =0fori >1) in the full range —1 < z <1and p,,, =0, the expected value 1/
is given by the usual formula, Eq. (4). However, on an external boundary, or in other situations
in which the surface flux is restricted to the half-space 0 < x <1, the expected value I/_y is given
by Eq. (3), which reduces to Eq. (4) only when the flux is purely or mostly isotropic (in the half-
space) and x,. =0. Thus, the requirement for accuracy of the standard surface flux estimate is
more restrictive for external boundaries (a very isotropic surface flux) than for internal surfaces
(an isotropic or linearly anisotropic flux).

In all cases, the expected value given by Egs. (2) and (3) is a function of y,,,. For the
problems envisioned by Clark' and Dupree and Fraley,’ particle scattering within materials can

lead to very nearly tangent grazing on exterior boundaries,” and z,, is essentially 0. This is an
implicit assumption. When nearly or exactly tangent grazing is not possible, however, x . >0

and Egs. (4) and (6) are not obtained. Such situations can arise when estimating the surface flux
due to an external point source and when uncollided surface fluxes are computed. (In these
cases, positive u is in the direction of the rays, which may be opposite the direction of the

outward surface normal for the external boundary.)
Thus, there are many situations in which 2/¢ is a poor estimate of I/_y

In some cases, the surface flux cannot be expanded in powers of 4. For example, if the flux

has a 1/u dependence in the half-space, such that

* Ref. 3 says that “for convex surfaces on the exterior of a problem geometry to which vacuum
boundary conditions are applied, the flux tangent to the surface will be zero.” However,
extremely small crossing angles may still be obtained.
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b= g 1 ™
7 7

[where g, is just a coefficient for the reciprocal-u dependence and not one of the g; of Eq. (1)],

then the expected value of 1/u is

— ﬂmin (8)

a function of y,,,, as before. But if the minimum possible value of x is 0, then the expected

value of 1/u is meaningless — and 2/¢ is a poor estimate of I/_y Furthermore, if the flux has a
1/|u| dependence in the whole range — 1 < ¢ <1, integrating over [, €], as is done in Eq. (5), is
integrating over a discontinuity at ¢ = 0. This example obviously violates the standard

assumption of a “reasonably isotropic’™ flux; it is merely cautionary. The surface flux due to an

irradiating source may very easily have such a distribution, as shown in the next section.

III. NUMERICAL DEMONSTRATIONS
111.A. Point Source Irradiating a Disk

Consider a point source centered over a disk, as shown in Figure 1. Let the source angular
density be S(Q) particles per unit solid angle per unit time (time is not necessary but customary;
most people think of steady-state problems as “per unit time”). The direction Q is defined by the
polar angle 8, measured from a line connecting the source point with the center of the disk, and
the azimuthal angle o, measured from an arbitrary line through the source point and
perpendicular to the line defining . See Figure 1. The differential solid angle element is the
differential element of surface area on the unit sphere surrounding the source point:
dQ =sinf8dfdw. The rate of particles emitted into the cone subtending solid angle dQ) about
direction Q is

S(Q)dQ = S(0,w)sinfdbdw. 9)

A similar problem has been worked out previously’; we work it out here in order to highlight

the points important to the present paper as well as to establish the method and notation for the

more difficult problem in the next section.
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In an infinite medium that is purely absorbing with cross section Z, the particle flux ¢ in the
cone a distance x from the source is® the product of the source rate, an exponential attenuation

factor, a geometric attenuation factor (inverse-square law for distance), and 1/47:

S(Qe™

In this paper we let the source angular density depend on the polar angle € but not the azimuthal

angle . Thus, we drop the w argument and use S(0) = S(0, ®) and, since the objects of interest
and the intervening media will also have no @ dependence, ¢(x,8) = ¢(x, 0, w) = ¢(x,Q). Using

Eq. (9) in Eq. (10), integrating over 0 < w < 27, and multiplying both sides by x* yields
Zx

H(x,0)dA, = iS(e)i—;dAs, (10

where

dAg =27 x*sin0do (12)
is the differential element of surface area of the ring of thickness df formed by the intersection of
the cone of opening angle # and a sphere of radius x centered at the source point. Integrating
Eq. (11) over 0 < 8 <z would give the total flux on the surface of the sphere surrounding the
source, which will hereafter be referred to as the “source sphere,” although it must be
remembered that the source is only a point.

In this section, we desire to know the total flux on the surface of a disk of radius R centered a
distance 4 from the point source, as shown in Figure 1. The source particle ray of trajectory 6
intersects the disk at radius » on the disk. Since there is no scattering, the cosine of the source
particle trajectory cos 6 is the same as the surface-crossing cosine u (see Figure 1). For a fixed
value of 6, the intersection of the source sphere of radius x and the irradiated disk defines the
relationships among 8, u, x, and r (and the constant £):

,u:cosﬁzﬁ: L

— (13)
X Arr+h’
Specifying that the flux of interest is that on the disk only, the dual argument of ¢ in Eq. (11) can
be reduced to a single argument, recognizing that ¢(8), ¢(u), #(x), and ¢(r) refer to the flux at

the same point (a ring) on the disk and using the argument to identify the functional form that is
intended. With this understanding, and replacing dA4s with the differential element of surface

area on the disk d4p, Eq. (11) becomes, for example,
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1 e—ZX(/l)
—5(0) 5 dd,; (14

Pandd, =~ ()

the argument of ¢ and x can equivalently be 7 or 6.
The differential element of surface area on the disk is related to the differential element of
surface area on the source sphere through
dA, =dAg /u (15)
(this statement is proved in Appendix A). Using Egs. (12) and (13), it can easily be shown (see
Appendix A) that

2w hdu
dd, = R (16)

(as usual, the negative sign is handled by reversing integration limits as appropriate).
Using Egs. (16) and (13) in Eq. (14) and integrating over y, the total flux ¢, on the surface of
the disk is

—Zh

e’

1 et
b =31, SO . (17)

where the minimum possible surface-crossing cosine is [from Eq. (13)]

i =[(RIRY 1] (18)
The integrand of Eq. (17) is ¢(x) on the disk surface. For an isotropic source [S(0) = c,
where ¢ is a normalization constant] in a void (X = 0), the surface flux has a 1/u dependence
where it is non-zero. For a linear cosine source [S(0) = ¢ cos 8 = ¢ ] in a void, the surface flux
is isotropic where it is non-zero. For a quadratic cosine source [S(0) = ¢ cos’O=c ,uz] in a void,
the surface flux is linear where it is non-zero.

At this point we change notation slightly. The parameter ¢ is the cosine cutoff below which u

is considered a grazing angle cosine; thus, ¢ becomes x_,. The reciprocal of 1/_,u is the

cut*
appropriate substitute cosine divisor to use when y <y ; thus, 1, = 1/ 1/_,u, or, rewriting
Eq. (2),
Heur
L dp pg(p)

_ ' (19)
f,:ﬁf dp g(u2)

sub
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In this notation, the standard surface-flux approximation [Eq. (4)] is x,,, = 4, /2 for u < p.,,-

Now using Eq. (19) with the integrand of Eq. (17) as ¢(u), the appropriate value for x, for

a point source irradiating a disk is
—Zh
J.: duS@)e *
Hop == S (20)

e#

j NG
Hopin ,U

Using h=1cmand £ =0.01 cm™', 4, /u,, is plotted against the ratio of the disk radius to
the source distance, R/h, for various values of y_, in Figs. 2 through 6. Figures 2 and 3 show

results for an isotropic point source in a void and a purely absorbing medium, respectively.
Figures 4 and 5 show results for a linear cosine point source in a void and a purely absorbing
medium, respectively. Figure 6 shows results for a quadratic cosine point source in a void. (For
the void cases, the integrals are simple and analytic. For the attenuating cases, numerical
evaluation of exponential integrals is required’; the integrals are given in the Appendix B.)

For the isotropic point source in a void, the flux at the disk has a purely 1/u4 dependence
where it is non-zero. Figure 2 shows the dependence of x, /u,,, onboth g, and u,,, (or R/h).
As suggested in Sec. II, there is no single value of the ratio that would provide an accurate

estimate of the surface flux for any single value of R/h or y,. In other words, as R/h increases
and there is more and more grazing, the appropriate value of x, /4., changes. Contrast this

behavior with that of Figure 3 for an isotropic point source in an attenuating (purely absorbing)

medium. As R/h increases, each particular choice of ,, converges to a specific appropriate
value of u, /u.... Until convergence, however, u, /., is a function of g, (R/h) as in Figure

2. Note, in both Fig. 2 and 3, that the historic value of s, /1., = %> has no significance

whatsoever.
For the linear cosine point source [S(6) = ¢ cos 8 = ¢ u] in a void, the flux at the disk is purely

isotropic where it is non-zero. As derived in Sec. II, the historic value of x, /4., =Y is
appropriate in this case, but only when g . is small (large R/h) compared to x_, [¢ in Eq. (3)].

Figure 4 demonstrates this behavior and shows the dependence on . and x., when g . is
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large (small R/A) compared to x,,. [From Eq. (18), note that 4, ~ h/R for R/h > 10.] In fact,
for an isotropic flux, the correct value of the ratio [using Eq. (20) for x,] is
ﬂsub :l(l_i_ﬂminj’ (21)
ILlCMt 2 ILlCMt
which reduces to u,, /4., =" when u,, /.., is small.

However, Figure 5 for the linear cosine point source in an attenuating medium shows the

same behavior as Figure 3: u_, /4., converges to a specific value for a particular choice of x,,,,
and the historic value of x,, /1., = Y has no significance.

For the quadratic cosine point source [S(0) = ¢ cos’ O=c ,uz] in a void, the flux at the disk is
purely linearly anisotropic where it is non-zero. As derived in Sec. II, the historic value of
Lo | M. = > 1s not appropriate in this case. Figure 6 demonstrates this. The appropriate value
is f,, [ e =% [Eq. (6)], but only for small y,,, (large R/h) relative tou,,,; otherwise, 4, / t,..

is a function of 4, and . In fact, for a linear cosine flux, the correct value of the ratio [using

Eq. (20) for x,,] 1s

/Llsub — g 1 + (/lein /ll'lcut )+ (ﬂmin /ﬂcut )2 22
lucut 3 1+(lumin /lucut) . ( )

Although this section deals with an analytic ray-tracing problem, the conclusions apply to the
case of the flux on an external boundary enclosing a scattering material. In that situation, y . is
zero, corresponding to very large values of R/h. If the surface flux has a 1/u dependence or if it
is mostly anisotropic, the standard surface flux approximation will not be accurate. If the surface
flux is mostly isotropic, the standard surface flux approximation will be accurate.

111.B. Point Source Irradiating a Hollow Sphere

For the case of a point source irradiating a finite disk, when there is no scattering, x,, never

quite reaches zero. When an unobstructed point source irradiates a complete sphere, however,
M., does reach zero.

We desire to know the total flux on the surface of a hollow sphere of radius R located a
distance 4 through a void from a point source, as shown in Figure 7. The source is the same as in
Sec. III.A; thus, we begin with Egs. (11) and (12), with £ = 0. In this geometry, the cosine of the

source particle trajectory cos @ is not the same as the surface-crossing cosine x. For a fixed value
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of 0, the intersection of a source sphere of radius x and the irradiated sphere defines the
relationships among 8, u, and x (and the constants R and /); x is the distance from the source
point along the trajectory @ to the irradiated sphere. As in Sec. III.A, specifying that the flux of

interest is that on the irradiated sphere only, the dual argument of ¢ in Eq. (11) can be reduced to

a single argument. Equation (11) becomes, for example,

1 dA,
yy S (G)W’ (23)

P(0)dA4, =
using ¥ = 0 and replacing dA4s with the differential element of surface area on the irradiated
sphere dA;.

The differential element of surface area on the irradiated sphere is related to the differential

element of surface area on the source sphere through

dA, = dA | u(0) (24)
(this statement is proved in Appendix C). Using Eq. (12) in Eq. (24),
27 x(0)* sin0d6o
dAI = . (25)
H(0)

Using Eq. (25) in Eq. (23) and integrating over 6, the total flux on the surface of a hollow
sphere due to a point source in a void is"

4, =1 [ aosing

I S©@)
2

H(o)
At @, the line of length x is tangent to the irradiated sphere. As shown in Appendix C, Eq. (26)

(26)

can be written in terms of u as

b = flau— =D
ﬁ (hj + 1% =1
R\ R “

B (27)
The lower limit of the integral is x,, =0.

The integrand of Eq. (27) is ¢(x) on the surface of the irradiated sphere. For a cosine

source,

RI|(hY
S(0) = O=c—.||=| +u° -1 28
(@) =ccos ch (R] Y7, (28)
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(see Appendix C) and the surface flux is a constant, ¢(1) = c(R/h)*. In this case, using Eq. (19),
the correct value of y,,, /1., is > regardless of 4 and R, since y,,, =0 for all 4 and R.

For an isotropic source, S(&) = ¢, and the flux is a complicated function of u. Using /& =
100 cm, the value of x, /u,,, [the numerator is given by Eq. (19)] is plotted against the ratio of
the sphere radius to the source distance, R/, for various values of x_, in Figure 8. (The
integrals are evaluated in Appendix B.) The historic value of x,, /4., = Y is appropriate in this
case for most of the range of R/h and u,,, except when the source point is very close to the
surface of the sphere and x_, is relatively large. Indeed, the complicated function of i given by
the integrand of Eq. (27) turns out to be surprisingly flat for a large range of R/A.

111.C. Point Source Irradiating a Hollow Rod

A formula for the flux at an external point due to an isotropic cylindrical surface source in a
nonattenuating medium is given in Ref. 7. The same formula gives the total flux on the
cylindrical surface due to an isotropic point source.'” The formula involves an incomplete
elliptic integral of the first kind that was evaluated for this paper using a numerical integration
package."!

Although hollow and situated in a void, the rod in this problem had dimensions
representative of a nuclear reactor fuel rod: a length of 360 cm and a radius R = 0.5 cm. In one
case, the point source was centered along the axis and was a distance 2 = 0.51 cm from the axis
for R/h = 0.98. In another case, the point source was centered along the axis and was a distance
h=1.5 cm from the axis for R/h = 0.33.

The total flux on the cylindrical surface was calculated with a version of MCNPS5 that was
modified to accept y,,, and u_, as user inputs. (The modified code also prints more digits in the
tally relative errors.) The same random number seed was used for all runs.

The absolute value of the relative difference between the Monte Carlo estimates and the
exact solution for the cases of R/A=0.98 and R/h = 0.33 are plotted in Figure 9 and Figure 10,
respectively, as a function of z_,. Like Figs. 2 through 6 and Fig. 8, Figure 9 shows that the

most appropriate value of g, /4., is not a fixed value but a function of 4. Comparing Figure

9 and Figure 10 shows that it is also a function of the geometry. In Figure 10, as in most of
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Figure 8 for the hollow sphere, the appropriate value of x, /u,,, is ¥ for small (< 0.01) values
of u_, (although for x,, = 0.0001 and 0.00001, the results were statistically indistinguishable).

II1.D. Point Source Irradiating a Material Sphere

Finally, consider a spherical one-group problem with materials but no scattering. The sphere
included seven concentric shells and two materials; parameters are given in Table I. The point
source was isotropic and 100 cm from the center of the sphere. The problem is to find the total
flux on radius 4. (This is essentially the same problem used in Refs. 5 and 10.) The exact
solution was obtained using a numerical integration package'' with an integrand in a form that
does not require the division by the surface-crossing cosine.'”

The total uncollided flux on surface 4 was calculated with a modified version of MCNP5 that
computes uncollided fluxes in arbitrary geometries due to point sources.” (This version also
accepts u,,, and u_, as user inputs and prints more digits in the tally relative errors.) The same
random number seed was used for all runs.

Results are shown in Figure 11. For this surface, R/h = 0.35, and the results of Sec. I11.B

suggest that, if there were no attenuation, the standard value of ., /1., = Y> would be the best

choice. Does the attenuation in the spheres affect this conclusion, as it did in Sec. III.A (cosine

source irradiating a disk with attenuation, Figure 5)? For the largest value of y_,, the MCNP5
standard value of 0.1, x_, = 0.045 was the best of the tested values. However, for x_, = 0.01

and 0.001, the most accurate results were indeed obtained with g, /¢, = %. For u,, =0.0001

and 0.00001, the results were statistically indistinguishable.

This problem shows again that the most appropriate value of x, /4, can be a function of
M., and that it is not always 2. On the other hand, it also corroborates the conclusion of
Sec. II1.B that for spheres with isotropic point sources and R/ not close to 1, u, /1., = > may
be generally appropriate, for small values of z,,. More attenuation than that present in this

geometry, however, might affect this conclusion.
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IV. SUMMARY AND CONCLUSIONS

In summary, the standard Monte Carlo surface-flux estimator prescription of scoring 1/ | y| for

| ,u| > u,,, but otherwise scoring 1/u,, = 2/u,,, is based on expanding the surface flux in powers

of « and making certain assumptions. Because of Clark’s analysis,' it is assumed that the flux is
isotropic or linearly anisotropic. However, for external boundaries or other surfaces on which

crossing is in only one direction, a linearly anisotropic (in the half-space 0 < x <1) flux requires
a different score, 1/ 42, =3/(2u,,,). The standard estimate, which is used in MCNP5 and other

Monte Carlo codes, requires greater isotropy for fluxes on external boundaries than for fluxes on
internal surfaces.

It is also assumed, but only implicitly in Refs. 1 and 3, that exactly tangent grazing is always
possible. However, in streaming problems, this assumption may not be valid. The appropriate
estimate then depends on the minimum possible grazing cosine. In fact, this paper shows that for

a point source irradiating a finite flat surface, the applicability of the standard x, /4., =% is

actually a rather special case. However, we have found that, for isotropic point sources
irradiating curved surfaces, the surface flux is surprisingly isotropic (if the source is not too close

to the surface) and x,, /4, = "> may be appropriate, even if there is some attenuation.

Finally, it is assumed that the cosine cutoff z_, is small. This paper has demonstrated this

requirement in streaming problems, but it has also demonstrated that the appropriate estimate

U | 1., may in fact depend on g, .

The test problems in this paper had streaming and absorption only, no scattering. Whether
the flux on an external boundary adjacent to a material with scattering is sufficiently isotropic to
allow Eq. (4) to accurately approximate Eq. (3) depends on the specifics of the problem,
including, of course, the degree of anisotropic scattering in the material.

Of course, it would be better to develop an approach to the surface-flux problem that did not

rely on advance knowledge of the problem-specific parameters x_, and u_,. High variance

estimators in Monte Carlo transport can often be replaced by lower variance estimators that score
on a pseudoparticle that is not part of the particle’s random walk. That is, the pseudoparticle is
only used for estimation purposes, has no statistical weight for the random walk, and is discarded
after the estimate is made. Typically the pseudoparticle is sampled from a biased density that

favors sampling of high (unweighted) scores. Because the density is biased to be high where the
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(unweighted) score is high, the high score regions are sampled more often, but with reduced
weight, so that the variance in the weighted score is much smaller than the variance with an
analog estimator. For example, Kalos'> makes a point detector estimate have finite variance by
sampling a pseudoparticle whose collision point is sampled from a biased density that
emphasizes collisions close to the point detector. The authors are unaware of any pseudoparticle
methods developed for the surface flux grazing angle problem, however.

Another sampling possibility that usually turns infinite variance transport estimates into finite
variance estimates is the “ex post facto” method.*'* This method has not been tried on the
grazing angle problem, but it does convert the infinite-variance point detector estimate into an
unbiased finite-variance point detector estimate.'*'*

Finally, the kernel density estimator has recently been combined with a variance reduction

method to estimate the surface flux.'> The method requires storing all surface crossings with

| ,u| < p,,; their distribution is analyzed in post-processing. Preliminary results for a simple test
problem are promising,'” though a proof of unbiasedness for a finite number of starting particles
has not been published.
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APPENDIX A
DISK SURFACE GEOMETRY

We seek to relate the differential element of surface area on the irradiated disk in Figure 1 to
the differential element of surface area on a sphere that surrounds the source (the “source
sphere”) and intersects the disk at radius » on the disk and radius x on the sphere. The source is
centered a distance /4 over the disk. Because there is no scattering, the surface-crossing cosine u

is the same as the cosine of the source trajectory angle 6,

M =cos0, (29)
and, from Figure 1,
bk
S ST (30)
Using Eq. (29),
ap =—sin 6. (31)
do
Using Eq. (30),
ap_ ri
dr - h2 : (32)
Therefore, using Egs. (31) and (32),
dr_du Ji
dg dé/ dr
h*sin @
= T (33)
ru

Now rearrange Eq. (33) and use x = h/u from Eq. (30) to find
rdr =L (x sin0do), (34)
Y7,
proving that the differential surface area element on the irradiated disk [the left side of Eq. (34)]
is the differential surface area element on the source sphere (the quantity in parentheses on the
right side) divided by u. Multiply Eq. (34) by 2z to get the surface area of the ring.
Now rearrange Eq. (32) to find

2

h
rdr = —?d,u. (35)
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The negative sign in Eq. (35) is handled by reversing the limits of the integration over 4. That is,
as 6 goes from 0 to its maximum value 6,,,,, ¢t goes from 1 to its minimum value g,,; the

negative sign goes away once the u integration is made to go from g4, to 1.
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APPENDIX B
EVALUATIONS OF INTEGRALS

For completeness, certain integrals used in evaluating Eq. (19) numerically in the test
problems are given here. These integrals were obtained using a powerful analytic integrator'®
(essentially a vast integral table) available on the World Wide Web.

The necessary integrals to obtain s, for an isotropic or linear cosine point source centered a

distance % over a disk of radius R in a purely absorbing (with attenuation coefficient ¥) medium

are
-Xh
—_— Hew
» # >h
oo (3], "
ﬂmi” ﬂ ﬂ /'lm[/l
_3h -Zh Heu
J'/ucu/ dﬂe 7 — {UB Mo ZhEl (Z_h)] , (37)
Humin 'Ll
Homiy
and
. _sh Heur
J.Hmd,u,ue H :l|}uz(l—z—h]e “ +(Zh)2E1(Z_hj] ’ (38)
o 2 H H
Himin

where E| is the standard exponential integral function. When x_, =1, Egs. (36), (37), and (38)

are used in the equation for the total flux on the disk due to a point source that is isotropic, linear,
and quadratic (in u), respectively. The integrals for the void case (X = 0) are trivial.

The integral in Eq. (36) does not look like the standard £, function. To clarify, we here work
out Eq. (35) analytically. Let

u= Z—h (39)
y7,
Then
du ="y, (40)
leading to [using £/ = uu from Eq. (39)]
du= —2 du. (41)
u

Define
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ul = z:h/lumin and M2 = Z:h//ucut : (42)
Using Egs. (39), (41), and (42), the left side of Eq. (36) becomes

-2h

cut “ Uy
Jmdn = =]

—u

= —[J.:du e;’ - j : du e:

= £, @)~ E\u,)] 43)
The last line of Eq. (43) uses the definition of the exponential integral £,(x) with x = u; and x =
up. Using Eq. (42) results in Eq. (36). With Eq. (36) thus verified, Egs. (37) and (38) can be

verified by differentiating the right sides.

The necessary integrals to obtain x_, for an isotropic point source a distance 4 from the

center of a hollow sphere of radius R in a void are

Hew

J.H(wd : ) My 2+ ’-1
- H P > = 1n u R H (44)
—| +u’ -1
[Rj g

Humin

and

Hewr

2
P A
Jp ~ “RJ tH 1} | (45)
[jvtyz—l

Himin

R

These equations can easily be verified by differentiating the right sides. For an unobstructed

geometry in which the sphere is completely irradiated, ¢, =0. When u_, =1, Eq. (44) is used

in the equation for the total flux on the sphere.
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APPENDIX C
SPHERICAL SURFACE GEOMETRY

We seek to relate the differential element of surface area on the irradiated sphere in Figure 7
to the differential element of surface area on a sphere that surrounds the source (the source
sphere with radius x) and intersects the irradiated sphere at radius R on the irradiated sphere and
radius x on the source sphere. The source is located a distance 4 from the center of the irradiated
sphere. From Figure 7, using the right triangle in the irradiated sphere,

R

(%) —sin’ @, (46)

lL[:

h
R
from which we find

sinﬁzgﬁl—yz (47)

(the positive roots are taken because 0 < 0 < x).
The next step is to find x in terms of 6. For this we use the Pythagorean Theorem on the

largest triangle in Figure 7:
W =W sin® 0+ [y + VR W sin? 0] (48)
and rearrange to find
x2+(2 Rz—hzsinze)x+(R2—h2):O. (49)

The solution is

x=—VR? —h’sin’ @ +—h’sin’ O+ h*. (50)

Arguing that x must be nonnegative, we keep the positive sign and rearrange to find

%=\/l—sin2 —J[gj —sin’ 6. (51)

The next step is to find da/d@. Using the Law of Sines,

sing sin@

X R ©2)

or, using Eq. (51) for x,
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. 2
a = asin hs;?e[\/l—sinz —J(%) —sinzﬁ} . (53)
The derivative is

-2
da hcos@ m_ _sin2 g - sin’ @ sin” @ (54)
dO  Rcosa V J1—sin?@ \/[Rjz oy
— | —sin
h

where we have identified v1—sin’ & = cosa in the denominator. Combining the third and

o

fourth terms in the brackets and using Eq. (51), this simplifies to

da x cos® sin’ @
— == 1+ . (55)

d6 R cosa R\
1—sin’ @ (hj —sin’ @

Identifying v'1—sin® @ = cos#, using Eq. (46), and doing the addition in the brackets, Eq. (55)

becomes

Ru
da xcos@ 70056’+sm 0

' (56)
d0  Rcosa R s

Next, note from Figure 7 that & + 8 = acos i or, rearranging and taking the cosine of both
sides,
cosa =cos(acos i —0). (57)
Applying the addition theorem for cosines and using (from Figure 7)

sin(acos ) = (hsin0)/R yields

cosa = ,ucos<9+%sin2 0.

(58)
Using this in Eq. (56) and simplifying yields
da _ x
d0  uR’ (59)

Finally, rearrange Eq. (59) and use Eq. (52) to find
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R’sinada = l(xz sin&’d@), (60)
U

proving that the differential surface area element on the irradiated sphere [the left side of
Eq. (60)] is the differential surface area element on the source sphere (the quantity in parentheses
on the right side) divided by u. Multiply Eq. (60) by 2z to get the surface area of the ring.

To convert Eq. (26) to Eq. (27), use Eq. (46) to find

du _( h jz sinfcos b

=13 61
40~ \R P (61)
and Eq. (47) to find
2
cosﬁzg (%} +u’ -1 (62)
Thus
: _ pdpt
sin@d o0 = — (63)

hlony L
— |l = -1
R [R) :

The negative sign in Eq. (63) is handled by reversing the limits of the integration over x. That is,
as 0 goes from 0 to G,,4y, 1t goes from 1 to 0; the negative sign goes away once the y integration is

made to go from 0 to 1.
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Table I. Spherical Material Test Problem

Radius | Outer Radius Material z
Index (cm) (cm )
1 20. Void 0.0
2 25. 1 0.4086457
3 30. Void 0.0
4 35. 1 0.4086457
5 40. Void 0.0
6 45. 1 0.4086457
7 50. 2 0.1876253
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(arbitrary direction)

Figure 1. Point source irradiating a disk.
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(arbitrary direction)

Figure 7. Point source irradiating a sphere.
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